Ionization Constant of Weak Acid

PURPOSE

The purpose of this experiment is to determine the ionization constant of an organic acid, or indicator. The techniques to be used include using a pH meter and spectrophotometry.

DISCUSSION

An acid-base indicator is a weak acid and ionizes according to the equation:

$$
\text { HIn }(\text { Color } 1) \leftrightarrow \mathrm{H}^{+}+\mathrm{In}^{-}(\text {Color } 2)
$$

The ionization constant may be expresses as:

$$
K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}
$$

If we let x represent the fraction of indicator in the ionized form, then:

$$
\frac{x}{1-x}=\frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}
$$

Thus we may use this expression for K.

$$
K=\frac{x}{1-x}\left[\mathrm{H}^{+}\right]
$$

or

$$
p \mathrm{~K}=p \mathrm{H}-\log \frac{x}{1-x}
$$

pH can be determined using a pH meter. The ratio $x / 1-x$ can be determined using a spectrophotometer and Beer's Law, which states that absorbance is proportional to concentration.

In an acid solution most of the indicator will be in the form HIn. In a basic solution nearly all of the indicator will be in the form In^{-}. At intermediate pH there will be some HIn and some In^{-}.

If we choose a wavelength where either HIn or In^{-}absorbs strongly the total absorbance will be made up of absorbances contributed from each form.

If we let A_{a} represent the absorbance in the most acid solution and A_{b} the absorbance in the most basic solution, then at intermediate pH the absorbance is:

$$
A=(1-x) A_{\mathrm{a}}+x A_{\mathrm{b}}
$$

Solving for x we find:

$$
x=\frac{A_{\mathrm{a}}-A}{A-A_{\mathrm{b}}}
$$

If we substitute this into the equation for pK , we obtain:

$$
p \mathrm{~K}=p \mathrm{H}-\log \left(\frac{A_{\mathrm{a}}-A}{A-A_{\mathrm{b}}}\right)
$$

If we plot $\log \left(\frac{A_{\mathrm{a}}-A}{A-A_{\mathrm{b}}}\right)$ vs. pH we should obtain a straight line.

At the intercept where $\log \left(\frac{A_{\mathrm{a}}-A}{A-A_{\mathrm{b}}}\right)$ is zero, the pH is pK .

Also, where $\mathrm{pH}=0,-\log \left(\frac{A_{\mathrm{a}}-A}{A-A_{\mathrm{b}}}\right)=p \mathrm{~K}$

EQUIPMENT AND CHEMICALS

Spectrohotometer (visible, such as Spectronic 20, Turner 350, or Coleman 124)
pH meter
1 MHCl , small amount
1 M Sodium Acetate, 50 ml
Indicator stock solution to be made up as follows:
(a) approx. one-half gram indicator
(b) 15 ml 0.1 M NaOH
(c) Sufficient distilled water to make one liter.

Indicator may be methyl orange, methyl red, bromphenal blue, or bromcresol green.

PROCEDURE

Add 2 ml indicator to $50 \mathrm{~m} /$ sodium acetate in a $250 \mathrm{~m} /$ volumetric flask. Fill to the mark with distilled water.

Find the absorbance of this solution in the range 350-650 nm. Use a recording spectrophotometer, such as Coleman 124 or P. E. Lambda 3.

Determine the pH of the solution. (Be sure the pH meter is calibrated!)
Add a small amount of 1 MHCl to reduce pH and again determine absorbance as a function of wavelength. Measure the pH of the solution.

Repeat the procedure over the range $\mathrm{pH} 2-6$ for a total of at least five absorption curves. When using Coleman 124 all runs may be made using same recorder paper.

At a wavelength corresponding to one of the absorption maxima, plot $\log \left(A_{\mathrm{a}}-A / A-A_{\mathrm{b}}\right)$ against pH . The graph should be linear. At either intercept, determine pK. Note: The number of points on your graph will be the number of runs minus 2.

