PARTICLE IN A BOX: VISIBLE SPECTRA OF DYES

Schroedinger developed quantum mechanics based on the use of classical wave equations to describe subatomic particles. One form of the Schroedinger equation for a particle moving in one dimension is

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}}(E-V) \psi=0
$$

where

$$
\begin{aligned}
& \psi=\begin{array}{l}
\text { wave function (No physical meaning, but } \psi^{2} \text { proportional to } \\
\quad \text { probability of finding particle.) }
\end{array} \\
& m=\text { mass of particle } \\
& E=\text { total energy } \\
& V=\text { potential energy } \\
& \hbar=h / 2 \pi
\end{aligned}
$$

The "particle-in-a-box" is a description of a small particle moving in a box in which the potential energy, V , is zero in the box, but is infinite outside the box. The length of the box is "a".

In order to keep the particle in the box ψ must be zero outside the box. Because
ψ must be continuous, ψ must also be zero at $x=0$ and $x=a$.
One solution to this problem is

$$
\psi=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2} x
$$

At $x=a, \psi=0$; thus

$$
\sin \left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2} a=0
$$

But also

$$
\sin (n \pi)=0
$$

Where $n=1,2,3, \ldots$
So,

$$
\left(\frac{2 m E}{\hbar^{2}}\right)^{1 / 2} a=n \pi
$$

or

$$
E=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
$$

or

$$
E=\frac{n^{2} h^{2}}{8 m a^{2}}
$$

(n is a quantum number $1,2,3, \ldots$)

According to our results, the energy levels are quantized!
The Pauli exclusion principle requires that there be no more than two electrons in any energy level. For molecules with $N \pi$ electrons there will be $N / 2$ levels. If an electron jumps from the level $n=\mathrm{N} / 2$ to the lowest empty level, $N / 2+1$, the change in energy, ΔE, is

$$
\Delta E=E_{f}-E_{i}=\left[(N / 2+1)^{2}-(N / 2)^{2}\right] \frac{h^{2}}{8 m a^{2}}
$$

Since $\Delta E=h v$
Where $v=\frac{c}{\lambda}$

$$
\begin{aligned}
& v=\text { frequency } \\
& c=\text { speed of light } \\
& \lambda=\text { wavelength }
\end{aligned}
$$

$$
\begin{gathered}
v=\frac{\Delta E}{h} \\
v=(N+1) \frac{h}{8 m a^{2}} \\
\lambda=\frac{c}{v}
\end{gathered}
$$

or

$$
\lambda=\frac{8 m c a^{2}}{h(N+1)}
$$

For the series of compounds we will study

$$
a=(2 j+4) L
$$

where j is the number of double bonds in the polyene chain between two rings and $L=1.39 \times 10^{-10} \mathrm{~m}$ the C---C bond length of order 1.5.

Also $N=2 j+4$. In addition the highly polarizable benzene rings require that we increase the length of the box by L.

So that

$$
a=(2 j+4) L+L
$$

or

$$
a=(2 j+5) L
$$

Then

$$
\lambda=\frac{8 m c L^{2}(2 j+4)^{2}}{L(2 j+5)}
$$

By increasing the box length by L

$$
\lambda=\frac{8 m c L^{2}(2 j+5)}{h}
$$

The above equation may be used to estimate the wavelength of light absorbed by an electron of mass, m, in a polyene chain.

PURPOSE

The purpose of the experiment will be to test the particle-in-a-box model. For an electron in a box the wavelength of maximum absorption is given by

$$
\lambda=\frac{8 m c L^{2}(2 j+5)}{h}
$$

EQUIPMENT AND CHEMICALS

Spectrophotometer (Turner 350, Coleman 124, P. E. Lambda 3) Methanol
Cyanine dyes ($1.00 \times 10^{-3} \mathrm{M}$ stock solutions in methanol, referred to as \#I, \#II, \#III.)

Compound (I)

1,1'-DIETHYL-2,2'-CYANINE IODIDE
Compound (II)

Cl
1,1'-DIETHYL-2,2'-CARBOCYANINE CHLORIDE

Compound (III)
(III)

\#II is also known as pinacyanol chloride.

PROCEDURE

From $1.00 \times 10^{-3} \mathrm{M}$ stock solution, prepare the following solutions (Use 100 microliter micropipet.)
\#| Dilute $0.10 \mathrm{~m} /$ to $10 \mathrm{~m} /$ in methanol Dilute 0.10 ml to 25 ml in methanol
\#II Dilute $0.10 \mathrm{~m} /$ to $25 \mathrm{~m} /$ in methanol
Dilute 0.10 ml to 50 ml in methanol
\#III Dilute $0.10 \mathrm{~m} /$ to $25 \mathrm{~m} /$ in methanol
Dilute 0.10 ml to 50 ml in methanol
For each dye you will have two solutions of different concentrations. Scan each solutions as follows:
$\begin{array}{ll}\text { \#I } & 470-550 \mathrm{~nm} \\ \text { \#II } & 575-635 \mathrm{~nm} \\ \text { \#III } & 675-735 \mathrm{~nm}\end{array}$
Use the graph showing absorbance (A) vs. wave length (λ) for each solution.
Use Beer's law to determine the molar absorptivity for each solution of each dye.

$$
\begin{aligned}
& A=a b c \\
& A=\text { Absorbance } \\
& a=\text { molar absorptivity } \\
& b=\text { path length in } \mathrm{cm} \\
& c=\text { concentration, } \mathrm{mol} / \mathrm{L}
\end{aligned}
$$

For each solution calculate a. For a given dye the two values of a should agree within five per cent.

For each dye calculate maximum λ for the electron-in-a-box and compare it with your experimental values.

Literature values for maximum λ are the following:

Dye \#I	525 nm
Dye \#II	610 nm
Dye \#III	705 nm

(From Introduction to Quantum Concepts in Spectroscopy, W. G. Laidlow, 1970, p. 35.)

